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Multidimensional Franck-Condon simulations of the dispersed fluorescence spectra of phenol generated with
geometries obtained from the highly correlated post-Hartree-Fock methods CASSCF, MRCI, and SACCI
are presented. While the simulations based on CASSCF and MRCI optimized geometries are very similar to
each other and fail to reproduce the experimentally measured intensities faithfully, the simulations obtained
from SACCI optimized geometries are very close to the experimental spectra. The code developed for the
multidimensional Franck-Condon simulations is described. It is shown that the integral storage problem
common to the evaluation of multidimensional Franck-Condon integrals can be overcome by saving all
quantities needed to disk. This strategy allows the code to run on computers with limited resources and is
very well suited for application to molecules with a very large number of vibrational modes.

1. Introduction

Multidimensional Franck-Condon integrals are important
quantities in physical chemistry. In spectroscopy, they are
directly related to the vibronic transition intensities of polyatomic
molecules; in reaction dynamics, they are used to calculate
electron transfer rates in chemical and biological processes.1-4

A variety of approaches have been developed to evaluate
multidimensional Franck-Condon integrals. Among these, the
coherent state method of Doktorov et al.5 has been extensively
applied to large polyatomic molecules. Guner et al.6 was the
first to use this method to simulate vibronic spectra of large
molecules. Callis et al.7 applied the method to the fluorescence
spectra of indole and Berger et al.8 to the simulation of
vibrational sequence bands of benzene and pyrazine.

Multidimensional Franck-Condon simulations of the dis-
persed fluorescence spectra of phenol have been carried out by
Schumm et al.9 using S0 and S1 equilibrium geometries obtained
at the (8,7)-CASSCF/cc-pVDZ level of theory. These simula-
tions reproduced the main spectral features, but the intensities
of several vibronic transitions were either under- or over-
estimated. A much better agreement between simulation and
experiment was obtained by manually altering the S1 state
CASSCF geometry (shortening the C-O bond and elongating
along the coordinate of mode 6a) to produce the characteristic
quinoidal structure commonly associated with S1-S0 electronic
transitions. The structural corrections carried out by Schumm
et al. have further been corroborated by Spangenberg et al.,10

who have developed a Franck-Condon fit program that alters
the geometries of the states involved in the electronic transition
until a best match between the simulated and experimental
intensities is obtained. The changes in rotational constants thus
produced are indicative of the S1 structural characteristics
mentioned above and provide an excellent comparison to
rotational constants determined by ab initio methods, particularly
in the evaluation of the inherent weaknesses in excited state
methods.

Studies 9 and 10 indicate that vibronic transition intensities
are extremely sensitive to the upper and lower state geometries
and, therefore, that Franck-Condon simulations of vibronic
spectra of polyatomic molecules can provide very accurate
means to assess the quality of the calculated ab initio geometries.

Inspired by this fact, in this study, Franck-Condon simula-
tions of the dispersed fluorescence (DF) spectrum of phenol
based on S0 and S1 equilibrium geometries obtained from
CASSCF and the more highly correlated MRCI and SACCI
wave functions are presented and compared. A new Franck-
Condon program has been developed for this purpose, and like
the algorithms in the studies quoted previously, it is based on
the coherent state method of Doktorov et al.5 To provide the
reader with a description of the problem and how it was solved
computationally, we give a comprehensive account of the
underlying theory in section 2, with a description of the
computational code in the Appendix of this paper. An in-depth
analysis of the ab initio geometries and frequencies can be found
in section 3, which also contains a set of rotational simulations
of the S100 origin band. The rotational simulations were carried
out using the asymmetric rotor program developed by M. S.
Ford.11 Finally, in section 4, the Franck-Condon simulations
of the DF spectra are presented and discussed.

2. Theory

The intensityI κµ of an electric dipole transition between two
vibronic states is proportional to the square of the electric
transition dipole momentMκµ which in the adiabatic approxima-
tion can be written as eq 1.

Here,〈ψκ(q,Q)| or |ψm(q,Q)〉 and 〈øk,κ(Q)| or |øm,µ(Q)〉 denote
the final (k,κ) or initial (m,µ) electronic and vibrational states,
respectively;Mk,m(Q) is the electronic transition dipole moment;
andq andQ are the electronic and nuclear degrees of freedom.
The Born-Oppenheimer approximation generally prevents one
from finding analytic expressions ofMk,m(Q). A Taylor expan-
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Mκµ ≈ 〈øk,κ(Q)|〈ψκ(q,Q)|M(q,Q)|ψm(q,Q)〉|øm,µ(Q)〉 )
〈øk,κ(Q)|Mk,m(Q)|øm,µ(Q)〉 (1)
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sion of the transition dipole moment about the equilibrium
position Q0 of the initial electronic state is required to find
approximate solutions. If only the first term of the series is
considered, the Franck-Condon approximation, which neglects
the Q dependence of the electronic transition dipole moment,
is obtained and the evaluation of vibronic transition intensities
is simplified to the evaluation of the overlap (Franck-Condon)
integral between the vibrational states of the electronic transition
of interest (eq 2).

The vibrational wave functions of the initial and final electronic
states are written as products of one-dimensional wave functions
æ(Qr), which are in turn functions of 3N (N ) number of atoms)
normal coordinatesQ′′r andQ′r of the initial and final electronic
states, respectively. The normal coordinatesQr are related to
the displacement coordinatesui of nucleusi via eq 3.lRi,r are
the elements of a [3N] × [3N - 6] orthogonal matrixL and
relate the mass-weighted Cartesian displacement coordinates to
the normal coordinates. It is generated from the ab initio Hessian
when a normal-mode analysis is carried out.

L depends on the atomic masses and, more importantly, the
force constantskij and thus is specific to the ab initio method
and electronic state for which it is calculated. Consequently,
the normal coordinatesQ′′r and Q′r also differ and this causes
the normal modes of one electronic state to be rotated or mixed
in the normal-mode basis of the other electronic state, a
phenomenon first considered by Duschinsky.12 It poses a
particular problem when solving eq 2 as it prevents the Franck-
Condon integrals from being reduced to simple products of one-
dimensional integrals, making their evaluation complicated and
computer intensive. Duschinsky proposed that the two sets of
normal coordinatesQ′′r andQ′r are related to each other by the
linear transformation shown in eq 4.

TheDuschinsky matrixS is an orthogonal matrix describing
the rotation, and thenormal coordinatedisplacement vectord
the translation betweenQ′′r and Q′r. S and d are related to the
L-matrices, the atomic masses, and the equilibrium geometries
by eqs 5 and 6.L has the dimensions [3N] × [3N - 6],
excluding the three rotations and three translations of the normal-
mode analysis;M1/2 is a diagonal [3N] × [3N] matrix with each
atom’s mass repeated three times;r′′eq andr′eq are vectors of the
equilibrium geometries of the initial and final states, respectively.
Scan be viewed as an overlap matrix between the normal modes
of the two electronic states. The closer the diagonal elements
are to unity, the more the normal modes are similar to each
other in form and energy. Large off-diagonal elements indicate
a change in the energy ordering or mixing between different
normal modes. This mixing is the mathematical expression of
a Duschinsky rotation.

For the evaluation ofSandd, it is crucial that the equilibrium
geometries are oriented so that the Eckart conditions13 are
fulfilled14,15 for both states simultaneously. This is generally
the case when the atomic coordinates are in standard orientation,
the same orientation in which the normal mode analysis is
conventionally performed. There are, however, cases where the
standard orientation of the two electronic states to be overlapped
is largely different and axis switching effects need to be taken
into account requiring a more general transformation than the
one in eq 4. This problem has been discussed extensively in
the literature.15-17

Sharp and Rosenstock18 were the first to solve the Franck-
Condon integral problem for polyatomic molecules including
the Duschinsky effect. Their equations express individual
Franck-Condon integrals by a finite series expansion. This
approach was the first of its kind and provided a general basis
for later methodologies, one of which is the coherent state
method developed by Doktorov et al.,5 which yields the same
expression as the method of Sharp and Rosenstock. The solution
of a multidimensional Franck-Condon integral is now achieved
by recurrence relations, which are exact in the harmonic
approximation. The derivation of these relations can be found
in a recent publication by Berger et al.,8 and thus, only a
qualitative explanation of the principles behind it is given here.
In short, an analysis of the action of the Duschinsky transforma-
tion on the vibrational Hamiltonian expressed in terms of
annihilation and creation operators reveals the existence of an
operator (which is an element of the Lie group Sp (2N,R) ∧ H
(N), a dynamical symmetry group of the vibrational Hamilto-
nian) that connects the initial and final Hamiltonians and whose
matrix elements are the Franck-Condon integrals. Taking
advantage of the fact that coherent states can serve as generating
functions for the stationary states (used in eqs 1 and 2) of the
vibrational Hamiltonian and that furthermore they are a basis
of the dynamical group representation, the overlap integral
between the coherent states of the initial and final electronic
states can be used as a generating function for the Franck-
Condon integrals, which leads to the extraction of recurrence
relations for their evaluation. These relations are given in eqs 7
and 8, where the former is used to decrement the final and the
latter the initial stationary state vector.

Mκµ ) Mkm(Q0)〈øk,κ(Q)|øm,µ(Q)〉 )

Mkm(Q0)〈∏
r)1
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r)1
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æ(Q′′r )〉 (2)

mi
1/2ui ) ∑

r)1

3N

lRi,rQr (3)

Q′′r ) ∑
k

SrkQ′k + dr (4)

S) (L′′)-1L′ (5)

d ) (L′′)-1M1/2(r′′eq - r′eq) (6)

〈V′1, ... ,V′i + 1, ... ,V′3N-6|Vb′′〉 )

2 ∑
k)1

3N-6

Rik( V′′k

V′i + 1)1/2

〈V′1, ... ,V′i, ... ,V′3N-6|V′′1, ... ,V′′k -

1, ... ,V′′′3N-6〉 + ∑
j)1

3N-6

(2Q - 13n-6)ij( V′j

V′i + 1)1/2

〈V′1, ... ,V′j -

1, ... ,V′3N-6|Vb′′〉 - (Rδ)i( 2

V′i + 1)〈V′1, ... ,V′i, ... ,V′3N-6|Vb′′〉

(7)

〈Vb′′′|V′′1, ... ,V′′k + 1, ... ,V′′3N-6〉 )

2 ∑
i)1

3N-6

Rik( V′k

V′′i + 1)1/2

〈V′1, ... ,V′i - 1, ... ,V′3N-6|V′′1, ... ,V′′k, ... ,

V′′′3N-6〉 + ∑
j)1

3N-6

(2P - 13n-6)kj( V′′j

V′′k + 1)1/2

〈Vb′|V′′′1, ... ,V′′j - 1, ... ,

V′′3N-6〉 + [(13N-6 - P)δ]k( 2

V′′k + 1)〈Vb′|V′′1, ... ,V′′k, ... ,V′′3N-6〉

(8)
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The [3N - 6] × [3N - 6] matricesQ, P, R, J, andλw and
the vectorδ are defined below. The angular frequenciesω in
λw are related to the normal-mode frequenciesf via eq 11.

The 〈0B′′|0B′〉 overlap is the only integral calculated explicitly. It
is shown in eq 12.

3. Ab Initio Results

3.1. Methodologies.Three ab initio methodologies have been
employed to optimize the S0 and S1 geometries of phenol. First,
(8,7)-CASSCF/cc-pVDZ calculations have been performed
using the same active space employed in several CASSCF
studies on phenol published previously.19,20It consists of seven
π-orbitals, six on the aromatic ring and one on the oxygen, as
shown in refs 22 and 23. Second, internally contracted MRCI/
cc-pVDZ geometry optimizations of the S0 and S1 states of
phenol have been performed using the state-specific CASSCF
wave functions just described as reference. The MRCI wave
functions for the S0 and S1 states consisted of 3 282 020
uncontracted configuration space functions (CSFs), which were
internally contracted to 170 429 configurations. Third, SACCI/
cc-pVDZ geometry optimizations have been carried out using
all valence orbitals as active space. For calculation efficiency,
the (8,7)-CASSCF/cc-pVDZ geometries were used as starting
geometries in the optimization. All single excitation operators
were included in the linked term of the SACCI calculations. A
level two perturbation selection was carried out for the linked
double excitation operators. No R2S2-type unlinked operators
were included. This led to an excitation space consisting of
40 377 operators for the SAC and 28 210 operators for the
SACCI wave function. Operator guess independent geometry
convergence was achieved after seven macroiterations for both
states. The geometries thus obtained were used for the subse-
quent simulations. The Dunning cc-pVDZ basis set was used
throughout.

MRCI calculations were performed with MOLPRO version
2002.621 and SACCI calculations with Gaussian 0322 on an IBM
RS/6000 (4x Power3 375 MHz 64-bit RISC, model 44P270,
AIX 5.1L, 4 Gb RAM, 64 Gb scratch) and Linux PC (2x
Pentium III 32-bit, Redhat Linux 9.0, 2 Gb RAM, 16 Gb
scratch).

3.2. Geometries: Rotational Constants and Simulations.
Very accurate rotational constants of the S0 and S1 states of
phenol have been measured by Berden et al.23 Table 1 lists these
constants together with the constants obtained from the CASS-
CF, MRCI, and SACCI calculations. Inspection of the values
indicates that the rotational constants obtained from SACCI
calculations are very close to experiment, while those obtained
from CASSCF and MRCI calculations are apparently less
accurate. However, while the SACCIB and C constants are
closer to experiment, in the case of theA constant, CASSCF

delivers a closer value in the ground state and MRCI in the
excited state. Thus, inspection alone leaves some ambiguity as
to which method has produced the best geometry. To visualize
the quality of the calculated geometries, rotational profiles of
the vibrationless S100 band origin were simulated with the
rotational constants in Table 1 and compared to a partially
rotationally resolved 1+ 1′ REMPI spectrum. The temperature
and resolution in the simulations were set to 2.12 K and 1400
MHz, respectively (typical values for the laser experiments
conducted at York). The transition dipole moment was set to
be essentially parallel to the phenolb axis (99%µb, 1% µa, as
per values reported in the literature19). The partially rotationally
resolved band profiles obtained from the ab initio rotational
constants fit the experimental band contour well but look very
similar and do not clearly show if any improvements are
obtained with the MRCI and SACCI methodologies. To gain a
better comparison between theory and experiment, high resolu-
tion rotational spectra have been simulated and compared to (a
simulation of) the high resolution experimental spectrum of the
vibrationless S100 origin recorded by Berden et al.23 In this
second set of rotational simulations, the resolution was set to
75 MHz and the temperature to 1.5 K. The high resolution

Q ) (1 + JTJ)-1, P ) JQJT, R ) QJT (9)

J ) λω′′Sλω′
-1, λω ) diag(ω1

1/2, ω2
1/2, ... ,ω3N-6

1/2 ), δB )

p-1/2λω′dB (10)

ω ) 2πc
f

(11)

〈0B′′|0B′〉 )

2[(3N-6)/2][∏
j)1

3N-6(ω′′j

ω′j)
1/4] det(Q)1/2 exp[-

1

2
δT(1 - P)δ] (12)

TABLE 1: S0 and S1 State Rotational Constants (in MHz)
Obtained from the CASSCF, MRCI, and SACCI
Equilibrium Geometries of Phenol

state rotational constant CASSCF MRCI SACCI exptla

S0 A 5671.1 5683.5 5693.5 5650.5
B 2630.6 2637.3 2614.7 2619.2
C 1797.1 1801.4 1791.8 1789.9

S1 A 5451.4 5359.8 5364.5 5313.6
B 2575.4 2600.3 2626.1 2620.5
C 1738.7 1750.9 1763.0 1756.1

a Experimental results taken from Berden et al.23

Figure 1. High resolution rotational spectra of the S100 vibrationless
origin. The resolution was set to 75 MHz and the temperature to 1.5
K. To show the quality of simulations compared to experiment, the
energy window was reduced to(30 GHz with a break of(2 GHz at
the origin (as this region of the spectrum is almost featureless).
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experimental spectrum recorded by Berden et al. was reproduced
by simulation using the experimental rotational constants
reported in ref 23 and listed in Table 1. Figure 1 shows the
obtained results. The simulations generated from the SACCI
geometries give the best fit to the experiment, with line
intensities and energies that are faithfully reproduced in both
the P and R branches over a range extending more than 30 000
MHz on either side of the origin. The rotational analysis thus
conclusively shows that the geometries predicted by SACCI are
of suitably high quality and suggest that improved Franck-
Condon simulations will be obtained from these geometries.

3.3. Normal-Mode Analysis.The S0 and S1 state normal-
mode analysis was carried out at the (8,7)-CASSCF/cc-pVDZ
level of theory for all three sets of geometries. This strategy
was mainly enforced by computation time restrictions, as SACCI
and MRCI frequencies on a small molecule like phenol would
take unfeasibly long computation times. Performing normal-
mode analyses using frequencies obtained at lower levels of
theory on geometries obtained from a higher level of theory is
generally accepted if the obtained frequencies are comparable
to experimental data. This indicates that the frequencies have
already been calculated at a high enough level of theory that
the benefit of further, higher level, calculations would be at best
marginal. In the case of phenol, no negative frequencies were
obtained, as the differences between the CASSCF and MRCI/
SACCI geometries lay between 0.1 and 1.0 pm and thus are
very small. Furthermore, the normal-mode frequencies compare

well to the experimental frequencies of the DF spectra, thus
giving some justification for the strategy employed.

As the S0 and S1 geometric minima at the SACCI and MRCI
levels of theory are displaced with respect to the CASSCF
minima, the CASSCF normal-mode analyses on the MRCI and
SACCI geometries have large translations, which are, however,
within an acceptable limit of 80 cm-1. This, and the absence of
negative frequencies, suggests that the potential energy surfaces
of CASSCF, MRCI, and SACCI are to a first approximation
very similar to each other and of reasonably high quality, further
justifying the use of CASSCF normal modes and frequencies
for the Franck-Condon simulations with MRCI and SACCI
equilibrium geometries.

Tables 2 and 3 list the results of the CASSCF normal-mode
analyses for the S0 and S1 states together with the experimental
frequencies and the major schools of mode assignments available
in the literature: Bist,24 Varsányi,25 and Roth.26 A schematic
representation of the phenol normal modes assigned to the
nomenclature of Varsa´nyi can be found in ref 26.

The CASSCF normal frequencies found at the MRCI equi-
librium geometries are similar to the frequencies found at the
CASSCF equilibrium geometry, with a mean difference of 4.31
cm-1 in the S0 state and 8.47 cm-1 in the S1 state. The
differences between the CASSCF frequencies found at the
CASSCF and SACCI equilibrium geometries are much larger,
with a mean difference of 14.72 cm-1 in the S0 state and
23.41 cm-1 in the S1 state. The maximum difference arises

TABLE 2: Vibrational Frequencies of Phenol in the S0 Statea

experiment assignment (8,7)-CAS NMA on assignment (8,7)-CAS NMA on

exptl CASSCF MRCI SAC

MN Bb Rc Rc Bb Vd
(8,7)-CASSCF

geometrye
MRCI

geometry Rb Bc Vd SAC geometry

1 244 225 10b 11 10b 249 242 10b 11 10b 244
2 309 τ(OH) 291 306 τ(OH) 381
3 404 15 18b 15 430 429 16a 429
4 409 404 16a 436 431 15 18b 15 430
5 503 504 16b 552 550 16b 545
6 527 526 6a 563 565 6a 563
7 619 618 6b 664 665 6b 662
8 686 686 4 720 720 4 707
9 751 11 10b 11 774 776 11 10b 11 763
10 817 10a 836 838 10a 817
11 823 820 1 12 1 871 878 1 12 1 868
12 881 17b 898 900 17b 882
13 973 17a 975 978 17a 964
14 995 5 1000 1004 5 987
15 1000 999 12 1 12 1068 1073 12 1 12 1073
16 1026 18a 1093 1097 18a 1092
17 1070 18b 15 18b 1144 1151 18b 15 18b 1147
18 1150 9b 1184 1197 9b 1189
19 1169 9a 1251 1256 9a 1253
20 1177 1174 â(OH) 1271 1276 â(OH) 1268
21 1343 1349 14 1358 1368 14 1367
22 1262f 1261f 13 7a 13 1382f 1400f 13 7a 13 1383f

23 1277 3 1463 1466 3 1465
24 1472 19b 1597 1603 19b 1600
24 1502 1505 19a 1633 1643 19a 1635
26 1604 8b 1740 1750 8b 1738
27 1610 8a 1758 1773 8a 1768
28 3027 20a 13 7a 3317 3316 20a 13 7a 3355
29 3049 7a 7b 7b 3336 3334 7a 7b 7b 3371
30 3063 7b 2 20b 3348 3346 7b 2 20b 3381
31 3070 20b 20b 2 3361 3360 2 20a 20a 3401
32 3087 2 20a 20a 3370 3369 20b 20b 2 3414
33 3656 σ(OH) 4162 4158 σ(OH) 4111

a All values are given in cm-1. Out-of-plane vibrations are in italics. MN, mode number; NMA, normal-mode analysis; B, assignment by Bist;
R, assignment by Roth; V, assignment by Varsa´nyi. b Data from ref 24. IR spectra.c Data from ref 26. DF spectra.d Reference 25.e Reference 27.
f Sometimes calledσ(CO) or ν(CO).
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between the frequencies of the OH torsion mode (τOH), with
values of 89.67 cm-1 in the S0 state and 104.29 cm-1 in the S1

state. Furthermore, large differences occur in some in-plane
modes. The largest are around 30 cm-1 for the high energy CH
and OH stretching modes in both the S0 and S1 states.

The energy ordering and the sign (direction) of the displace-
ment of some normal modes are inverted in the CASSCF
normal-mode analysis on the SACCI equilibrium geometries.
The sign change, however, does not affect the Franck-Condon
simulations, as Doktorov’s recursion relations are based on the
harmonic approximation; inherent to the harmonic potential is
a sign uncertainty in the change of the equilibrium geometry.
Expansion or contraction along a normal coordinate gives the
same value for the Franck-Condon integral.

Energy and sign change mainly affect some of the CH
stretching and out-of-plane modes, particularly in the S1 state.
This is reflected in a large degree of mode scrambling in the
Duschinsky matrix outlined and discussed in the next section.
The in-plane modes and the out-of-plane mode 10b seen in the
experimental DF spectra are not affected by displacement sign
changes and are also very similar in form to the CASSCF normal
modes obtained from CASSCF equilibrium geometries. Thus,
it can be concluded that the difference in the simulated intensities
will be mainly due to differences in the equilibrium geometry,
not in the description of the normal modes.

3.4. Duschinsky Rotations.It is important to determine if
the CASSCF normal-mode analysis on MRCI and SACCI

equilibrium geometries has introduced artificial Duschinsky
rotations, which would affect the calculated Franck-Condon
intensities and make a comparison of the simulations obtained
difficult.

In the following discussion, the mode assignment by Roth
based on the Varsa´nyi notation will be used. The plots of the
Duschinsky matrices will on the other hand list the modes in
terms of ascending energy based mode numbering. To relate
this numbering to the assignment by Roth, refer to Tables 2
and 3 for the S0 and S1 states, respectively.

The Duschinsky matrix obtained from the CASSCF normal-
mode analysis on CASSCF optimized S0 and S1 geometries is
shown in Figure 2a. As already observed in refs 9 and 10, the
matrix can be divided into three blocks of vibrations that do
not interact with each other. These include the out-of-plane and
in-plane vibrations, which have no interaction with each other,
as they belong to different symmetry elements in the G4
symmetry group, and the CH stretching vibrations (20a, 7a, 7b,
20b, and 2) which form a block of their own and do not interact
with the other in-plane vibrations. Among the in-plane vibra-
tions, two very strong Duschinsky rotations were observed in
ref 9 and are also reproduced in this analysis. The first occurs
between modes 12 (or 1 in the notation of Bist et al.24) and
18a, and the second, between modes 9b, 14, andâ(OH). The
out-of-plane vibrations show large rotations, which have to be
treated with care: the CASSCF active space only contains

TABLE 3: Vibrational Frequencies of Phenol in the S1 Statea

assignment assignment

experiment exptl CASSCF MRCI (8,7)-CAS NMA on SACCI (8,7)-CAS NMA on

MN Bb Rc Rc Bb Vd (8,7)-CASSCF geometrye MRCI geometry Rb Bb Vd SACCI geometry

1 206 162 10b 11 10b 182 164 10b 11 10b 144
2 187 16a 271 259 16a 240
3 635 τ(OH) 284 314 4 349
4 356 465 4 371 364 τ(OH) 388
5 396 15 18b 15 417 416 15 18b 15 419
6 441 16b 472 468 16b 458
7 615 580 11 10b 11 493 491 11 10b 11 474
8 475 6a 507 510 6a 511
9 580 615 10a 540 543 10a 517
10 523 6b 582 582 17a 564
11 734 700 17a 593 594 6b 580
12 700 726 17b 616 619 17b 594
13 726 734 5 701 711 5 708
14 783 1 12 1 823 833 1 12 1 834
15 935 12 1 12 969 983 12 1 12 995
16 962 18b 15 18b 1014 1026 18a 1039
17 958 18a 1031 1036 18b 15 18b 1040
18 975 9a 1216 1222 9a 1221
19 989 9b 1234 1240 9b 1240
20 1005 â(OH) 1283 1290 â(OH) 1303
21 1273 13 7a 13 1373f 1397 13 7a 13 1403
22 1131 3 1437 1443 3 1448
23 1478 19b 1510 1520 19b 1530
24 1498 19a 1546 1559 19a 1563
24 8b 1675 1693 8b 1708
26 1566 8a 1700 1720 8a 1732
27 1180 1572 14 1864 1881 14 1895
28 3084 20a 13 7a 3344 3342 20a 13 7a 3374
29 3092 7a 7b 7b 3355 3350 7a 7b 7b 3380
30 7b 2 20b 3371 3369 7b 2 20b 3407
31 3136 20b 20b 2 3380 3378 20b 20b 2 3413
32 3186 2 20a 20a 3392 3391 2 20a 20a 3428
33 3581 σ(OH) 4158 4147 σ(OH) 4090

a All values are given in cm-1. Out-of-plane vibrations are in italics. MN, mode number; NMA, normal-mode analysis; B, assignment by Bist;
R, assignment by Roth; V, assignment by Varsa´nyi. b Data from ref 24. IR spectra.c Data from ref 26. DF spectra.d Reference 25.e Reference 27.
f Sometimes calledσ(CO) or ν(CO).
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π-orbitals and thus provides a good description only for in-
plane vibrations.

The Duschinsky matrix, obtained from the CASSCF normal
modes of the MRCI optimized geometries is essentially identical
to the one obtained from the CASSCF geometries and therefore
not shown. Conversely, the Duschinsky matrix obtained from
the CASSCF normal-mode analysis of the SACCI optimized
geometries (Figure 2b) shows some differences. As in the
previous matrix, there are three blocks formed by the out-of-
plane, in-plane, and CH stretching vibrations. In the in-plane
vibration block, the strong rotations between modes 12 and 18a,
9b, 14, andâ(OH) are present. However, there are substantial
rotations also occurring in the CH stretching block. This is a
result of the larger difference between the S0 and S1 calculated
CH stretching modes mentioned earlier. Thus, a simulation in
the CH stretching energy region would have to be treated with
care, as the large mode scrambling induced Duschinsky rotations
would have a substantial effect on the transition intensities.
However, the DF spectra of phenol only show substantial
transition intensities in the in-plane vibrations and the out-of-
plane vibration 10b, and thus, the artificial Duschinsky rotations
in the matrix will not affect the simulation intensities obtained
from the SACCI equilibrium geometries. Therefore, the differ-

ence in intensities will mainly be due to the difference in the
S0-S1 geometry changes determined at different levels of
theory.

4. Franck-Condon Simulations

4.1. Dispersed Fluorescence Spectra of the Electronic
Origin. Figure 3 shows the experimental and simulated DF
spectra obtained from the S1 electronic origin. As already
pointed out in refs 9 and 10, there are substantial differences

TABLE 4: Predicted S0-S1 Geometry Changes

SACCI MRCI CASSCF fita fit(rot) 1 isoa

S1-S0 Bond Length Change/pm
O-H 0.14 0.08 0.09 0.00 0.00
C1-OH -1.86 -0.97 -0.80 -2.20 -1.90
C1-C2a 2.83 3.43 3.66 2.30 2.90
C2a-C3a 2.94 3.30 3.41 2.10 2.40
C3a-C4 3.00 3.76 4.00 3.30 3.60
C3b-C4 2.38 3.21 3.43 2.70 2.90
C2b-C3b 3.14 3.96 4.11 3.00 3.30
C1-C2b 2.43 2.86 3.04 1.40 2.20
C2a-H2a -0.21 -0.24 -0.31 -0.30 -0.30
C3a-H3a -0.30 -0.26 -0.26 -0.40 -0.30
C4-H4 0.28 -0.04 -0.11 -0.20 -0.20
C3b-H3b -0.36 -0.28 -0.28 -0.40 -0.30
C2b-H2b -0.23 -0.23 -0.14 -0.40 -0.30

S1-S0 Angle Change/deg
C1-O-H 0.29 0.11 0.26 0.10 0.20
C2a-C1-O -1.73 -1.34 -1.06 -1.40 -1.40
C2b-C1-O -1.46 -0.78 -0.70 -1.00 -1.10
C1-C2a-C3a -1.87 -1.11 -0.91 -0.60 -0.90
C1-C2b-C3b -1.46 -0.94 -0.72 -0.40 -0.70
C2a-C3a-C4 -1.32 -0.86 -0.67 -2.30 -2.10
C2b-C3b-C4 -1.43 -1.04 -0.89 -2.60 -2.30
C2a-C1-C2b 3.29 2.12 1.76 2.40 2.60
C3a-C4-C3b 2.99 1.83 1.43 3.60 3.40
C1-C2a-H2a 0.14 0.23 0.30 0.00 -0.20
C1-C2b-H2b 0.19 0.19 0.23 -0.20 0.00

a Results taken from ref 10: “fit” marks the geometry changes
obtained from the fit to line intensities, while “fit(rot) 1 iso” are the
results obtained from a simultaneous fit to line intensities and the
experimental rotational constants ofh6-phenol.

Figure 2. Plot of the squares of the elements of the Duschinsky matrix
S obtained from the CASSCF normal-mode analysis on S0 and S1

CASSCF (a) and SACCI (b) geometries. The darker the square, the
closer the respective matrix element is to unity. The axes list the normal
modes in terms of mode numbers. To relate mode numbering to the
assignment by Roth based on the Varsa´nyi notation used in the profile
graphs and text, see Tables 2 and 3. The profile graphs show the
Duschinsky rotation of modeâ(OH) for an S0-S1 transition (right
profile window) and an S1-S0 transition (top profile window). The
degree of mode scrambling may be seen by the intensity of off-diagonal
components.
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between the experimental and simulated DF spectra obtained
from CASSCF geometries. Specifically, transitions involving
mode 6a are missing from the CASSCF simulation and the
simulated intensities of transitions involving mode 12 are too
intense. There is only a slight improvement in the intensities
obtained from the MRCI geometries. Mode 6a has become
slightly more intense, and mode 12 and its combination bands
have lost some intensity. On the whole, the spectrum is very
similar to the one obtained from the CASSCF geometries. The
spectrum obtained from the SACCI geometries shows a very
good resemblance to the experimental and fitted spectra of ref
10. Mode 6a and its combination bands now have an appropriate
intensity, while transitions involving mode 12 have become
considerably less intense.

In the experimental DF spectrum, there is also a very intense
band assigned to mode 16b2 between modes 12 and 18a. This
mode is missing in all simulations, the reason for which is a
Fermi resonance between modes 12 and 16b2. As the method
used for calculating Franck-Condon integrals is based on the
harmonic approximation, anharmonic effects such as Fermi
resonances are not taken into account.

4.2. DF Spectra of the 000 + 10b2 Vibronic Transition.
Figure 4 shows the experimental and simulated DF spectra
obtained from the vibronic transition 00

0 + 10b2. As with the
origin spectrum, mode 12 and its combination bands lose
intensity when going from CASSCF and MRCI to SACCI
geometries and approach the experimental spectrum in appear-

ance. Furthermore, the combination bands involving mode 10b2

become more intense. In the experimental DF spectrum, there
is also a very intense band associated with the 10b116a1

combination mode, which is missing in all of the simulated
spectra. Vibrations 10b and 16a have a′′ and a′ symmetry (or
b1 and a2 symmetry in G4), respectively, and the combination
band therefore has a′′ symmetry (or b2 in G4) and is symmetry
forbidden. Anharmonic effects, not included in the Franck-
Condon treatment, allow this transition to gain intensity, and
thus, the band is not reproduced in the simulations.

4.3. DF Spectra of the 000 + 6a Vibronic Transition. Figure
5 shows the experimental and simulated DF spectra obtained
from the vibronic transition 000 + 6a. Band 6a2 is an intense
transition in the DF spectrum but is completely missing in the
simulation obtained from the CASSCF geometries. This band
acquires some intensity in the MRCI based simulation but gets
very intense in the spectrum obtained from the SACCI
geometries. Furthermore, the 6a2 combination bands gain
considerable intensity in the SACCI based simulation, duplicat-
ing the experiment nicely. Bands 1 and 12 are missing in
CASSCF and MRCI but are too intense in the SACCI spectrum,
while 6a111 and 6a1121 remain too intense in all simulations.

4.4. DF Spectra of the 000 + 12 Vibronic Transition. Figure
6 shows the experimental and simulated DF spectra obtained
from the vibronic transition 000 + 12. The CASSCF based
simulation overestimates the intensity associated with band 1.
However, in both MRCI and SACCI, the band almost dis-

Figure 3. Experimental (a) and simulated DF spectra of the electronic
origin using (b) CASSCF, (c) MRCI, and (d) SACCI geometries. The
largest transition intensities have been labeled following the nomen-
clature of Varsa´nyi.25 The intensities are plotted with their associated
frequencies listed in Table 2. The experimental spectrum was repro-
duced by fitting Lorentzian line shapes to intensities taken from ref
10. The subscript number behind a mode indicates the number of quanta
in that mode.

Figure 4. Experimental (a) and simulated DF spectra of the 00
0 +

10b2 transition using (b) CASSCF, (c) MRCI, and (d) SACCI
geometries. The largest transition intensities have been labeled following
the nomenclature of Varsa´nyi.25 The intensities are plotted with their
associated frequencies listed in Table 2. The experimental spectrum
was reproduced by fitting Lorentzian line shapes to intensities taken
from ref 10. The subscript number behind a mode indicates the number
of quanta in that mode.
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appears, duplicating its intensity in the experimental spectrum.
Band 6a is completely missing in CASSCF but gathers intensity
in MRCI and approaches the experimental intensity in SACCI.
Additionally, 6a2 appears in SACCI but is still too small
compared to the experimental spectrum. The 10b218a1 band is
prominent in the experimental spectrum but is missing in
CASSCF and MRCI. In the SACCI based simulation, the band
has some intensity but remains severely underestimated, while
band 18a gains intensity with respect to its 12 and 1 combination
bands.

4.5. DF Spectra of the 000 + σCO (13) Vibronic Transition.
Figure 7 shows the Franck-Condon simulations of the DF
spectrum obtained from the vibronic transition 00

0 + σCO. The
experimentally prominent 6a1131 band, completely missing in
the CASSCF and MRCI based simulations, acquires an ap-
propriate intensity in the SACCI based simulation, while the
11121 combination band disappears. Combination bands 11131

and 121131 are less intense in SACCI but remain too intense
compared to the experiment. Band 6a, missing in CASSCF and
MRCI, is present in the SACCI simulation with an appropriate
intensity.

5. Discussion

The simulations obtained from the SACCI geometries are in
very good agreement with the experimental and fitted spectra
of ref 10. In common with the fitted spectra, they suffer from

similar discrepancies when compared to experiment. A key
reason for their similarity is reflected in the geometry changes
predicted by the fits and SACCI. The fits to vibronic line
intensities and rotational constants in ref 10 predict that the
average C-C bond length increases by 2.9 pm upon excitation
with an accompanying shortening of the C-O bond length of
1.9 pm. Similarly, for SACCI, the C-O bond length reduces
by 1.86 pm and the C-C bonds lengthen by 2.81 pm. This can
be seen from the values shown in Table 4.

The changes in the C-O and C-C bond lengths influence
the intensities associated with modes 6a, 1, 12, and 13 and their
combination bands. A correct estimate of their change is only
obtained from SACCI. The underestimated intensities associated
with mode 6a and its combination bands observed in the
CASSCF simulations clearly indicate that the shortening of the
C-O bond length upon excitation is underestimated. Modes 1
and 12 and their combination bands are largely overestimated,
because CASSCF underestimates the C-C bond lengthening.
A similar picture arises for the C-O and C-C bond length
changes predicted by MRCI, and thus, the simulations obtained
from these geometries are very similar to the CASSCF simula-
tions.

The underestimated C-O bond length contraction can be
related to the degree of correlation of the C-O bond via the
oxygen p orbital included in the CASSCF active space and the
reference of the MRCI wave function. The natural population

Figure 5. Experimental (a) and simulated DF spectra of the 00
0 + 6a

transition using (b) CASSCF, (c) MRCI, and (d) SACCI geometries.
The largest transition intensities have been labeled following the
nomenclature of Varsa´nyi.25 The intensities are plotted with their
associated frequencies listed in Table 2. The experimental spectrum
was reproduced by fitting Lorentzian line shapes to intensities taken
from ref 10. The subscript number behind a mode indicates the number
of quanta in that mode.

Figure 6. Experimental (a) and simulated DF spectra of the 00
0 + 12

transition using (b) CASSCF, (c) MRCI, and (d) SACCI geometries.
The largest transition intensities have been labeled following the
nomenclature of Varsa´nyi.25 The intensities are plotted with their
associated frequencies listed in Table 2. The experimental spectrum
was reproduced by fitting Lorentzian line shapes to intensities taken
from ref 10. The subscript number behind a mode indicates the number
of quanta in that mode.
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of this orbital is 1.99, clearly indicating a small multireference
character and thus a minor involvement in the S0-S1 bond
length change.

One of the major findings from the fits to the DF spectra of
phenol in ref 10 was that the quality of the fit is greatly improved
by constraining the geometric changes not only to match the
experimental vibronic intensities but also to state-specific
rotational constants of the molecule, as this avoids overcorrec-
tions in the geometries. The fact that the SACCI predicted S0-
S1 geometry changes are closest to the values obtained from
the simultaneous fit to line intensities and rotational constants
of six isotopomers of phenol indicates that, in contrast to the
geometries obtained from the fit to line intensities only, the
SACCI geometries are not overcorrected. However, the pre-
dicted SACCI geometry changes suffer from some major
shortcomings. Very precise experimental data regarding S0-S1

geometry changes have been obtained by Ratzer et al.28 through
fitting of the S1 state geometry to the inertial parameters of 12
isotopomers obtained from high resolution rotational laser
induced fluorescence (LIF) spectra. This group’s fits predict a
decrease of the C-O bond length similar to SACCI (1.40 pm).
However, there is also an increase of the O-H bond length by
1.9 pm; for SACCI, this bond is largely unaffected by the
electronic excitation.

The simulations obtained from SACCI geometries suggest
that the operator space of the SACCI wave function employed
in this study is large enough to yield superior geometries

compared to CASSCF and MRCI, but further improvement
would require a bigger operator space spanning a more extended
portion of the complete potential energy surface of the molecule.

It is at first sight surprising that only little improvement is
gained in the simulations when MRCI geometries are used. The
excitation space, from which the MRCI wave function is
constructed, is far larger than CASSCF. However, the key
ingredient in MRCI is the reference wave function from which
the first-order excitation space is generated. The choice of the
reference heavily influences the properties that one wishes to
describe. In the calculations presented, the CASSCF wavefunc-
tion was used as reference. Little improvement is gained
compared to CASSCF as the excitations forming the first-order
interaction space mainly recover dynamic correlation, which
does not play a major role in the description of the quantities
needed to obtain good vibronic simulations, specifically the
change in the C-O and C-C bond lengths. Thus, further
orbitals would have to be included in the reference space in
order to obtain a better potential energy surface along modes
6a and 8a. A far larger MRCI wave function would therefore
be required to gain some improvement in the simulations,
making calculations impracticable even for a small system like
phenol.

The SACCI excitation space formed by the linked operators
is smaller than the one of MRCI. However, the unlinked terms
make it far larger, thus yielding a wave function that is superior
to the MRCI wave function based on the (8,7)-CASSCF
reference. Furthermore, by virtue of the perturbation selection
of the excitation operators, the SACCI wave function contains
important excitations, thus giving a much improved performance
while still making calculations practicable even for larger
systems.

It has been shown that carrying out a CASSCF normal-mode
analysis on SACCI optimized geometries, although questionable
in terms of its consistency, does not affect the simulated
transition intensities and thus offers a cheap alternative strategy
for obtaining frequencies on SACCI equilibrium geometries
provided that the difference between the SACCI and actual
CASSCF equilibrium geometries is not too large. Of course, a
more consistent and thorough method would be to carry out
the normal-mode analysis at the SACCI level of theory. This
would require the inclusion of a large number of operators that
span the potential surface along all the 3N - 6 normal
coordinates. Prior to the normal-mode analysis, a new geometry
optimization has to be carried out for this enlarged operator set
until operator guess independent convergence is obtained. This
method requires very long computation times for phenol and
would be impossible to apply to the larger species such as
biomolecules.

6. Concluding Remarks

This study was a critical test of both the Franck-Condon
program developed and used for the simulations presented and
various ab initio methodologies that have become available for
the calculation of electronically excited states. It forms a basis
for calculations and choice of methodologies in the more
complicated cases such as clusters and biomolecules. Although
the results obtained suggest that the SACCI methodology is the
most suitable for generating Franck-Condon simulations that
are in good agreement with experimental spectra and should
be the only one used for assignments of vibrational bands and
vibronic spectra, the possibility that the CASSCF and MRCI
methods might perform better in certain cases cannot be
excluded. The wave functions recover different parts of the
electron correlation, each of which can be more or less important

Figure 7. Experimental (a) and simulated DF spectra of the 00
0 +

σCO (13) transition using (b) CASSCF, (c) MRCI, and (d) SACCI
geometries. The largest transition intensities have been labeled following
the nomenclature of Varsa´nyi.25 The intensities are plotted with their
associated frequencies listed in Table 2. The experimental spectrum
was reproduced by fitting Lorentzian line shapes to intensities taken
from ref 10. The subscript number behind a mode indicates the number
of quanta in that mode.
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to the geometric properties and excitation induced geometric
changes of the molecule under investigation. Nonetheless, the
information gained about the different ab initio methodologies
employed using phenol as a test case is very valuable, as one is
not completely in the dark about the suitability of various levels
of theory in predicting geometries accurately enough to allow
easy and accurate distinction between geometric isomers
frequently present with biomolecules and clusters through
Franck-Condon simulations.
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7. Appendix

When writing the algorithm used for the Franck-Condon
simulations presented in this paper, the aim was to create a code
that was capable of running on personal computers without the
random access memory (RAM) problems inherent to code
developed for this same purpose. This was achieved by using a
disk based storage method which still allows for calculations
to be performed in a realistic time frame, even on relatively
slow processors. Furthermore, filters have been developed to
allow direct interface of this program to the Gaussian, MOL-
PRO, and GAMESS-US computational suites.

The action of the recursion relations in eqs 7 and 8 on a
hypothetical overlap integral can be found in the appendices of
refs 8 and 9. Those recursion charts clearly show that, in the
evaluation process of a single overlap integral, integrals of the
same type are needed several times. Thus, efficient execution
of the recursion relations 7 and 8 can only be achieved by
generating the integrals in a specific order and by storing
previously calculated Franck-Condon integrals in the computer
memory. This is not an easy programming task, as a simple
multidimensional array that uses the set of 3N - 6 vibrational
quanta as an index would require enormous amounts of random
access memory, even when the relations are applied to small
molecules. A number of algorithms have been developed to
overcome this difficulty, with the most successful approaches
being the binary tree algorithm developed by Gruner and
Brumer6 and the three-level-fixed tree algorithm by Ruhoff and
Ratner.29 Schumm et al.9 implemented a hash table algorithm
which has also proved successful.

In the code presented herein, the integrals are written to a
dedicated file on the computer hard disk. As the program runs
down the recursion branches, it checks if the integral to be
calculated has already been written out. The integral is
recognized by its associated vibration state vector, which is
printed as a string of integers in a standard tab delimited ASCII
file. If the integral is found, the program moves up the recursion
branches until all loops are closed.

Saving the vibration state vector as a string where there is
no white space between the quantum numbers of different
vibrations restricts the maximum number of quanta in any one
vibration to nine. While this limitation is easily overcome, it
was not felt to be a severe restriction, as vibronic progressions
with more than six quanta are very rare in vibronic spectra
recorded in molecular beams. However, as strings can have up
to 256 characters, vectors with a maximum number of 256
modes can be stored, making this method amenable to Franck-
Condon simulations of very large molecules.

As the program was written for the simulation of electronic
spectra recorded in molecular beams, where the molecules are

in the vibrational ground state or a well-defined initial vibronic
state which generally does not contain more than two or three
vibrational quanta, only integrals of the type〈V1, ... ,V3N-6|0〉,
that is, where the initial state is in the vibrational ground state,
are saved, since they constitute the largest number of integrals
to be calculated in any one recursion. For the same reason, the
program automatically generates all possible quantum combina-
tions in the vibration vector of the final state but lets the user
define the quantum state of the initial state vector. To limit the
amount of integrals to be calculated, the program checks against
a set of user defined restrictions similar to those described in
ref 9 as it counts up the quantum numbers in the final state
vector. The parameter of major importance is the energy
windowsequivalent to the spectral range of interestswithin
which the user wishes to carry out the simulation, as the program
only considers vibrations up to the specified maximum energy
of this window. Furthermore, the user can restrict the number
of modes that can be simultaneously populated in any one
vibration vector that is evaluated. The total number of vibrational
quanta in all modes and the maximum number of quanta in
one mode can also be restricted.

In the Franck-Condon simulations of phenol DF spectra
presented in section 5, the energy window was set to be 2500
cm-1, the number of simultaneously populated modes to 2, the
total number of vibrational quanta in all modes to 20, and the
maximum number of quanta in one mode to the already
mentioned limit of 9. With the above restrictions, the evaluation
of the DF spectrum took 1 min and 32 s on a laptop equipped
with an 800 MHz Intel Celeron processor, showing that the
storage method implemented can be used for large molecules
on small, commercially available computers.

A more extensive set of test calculations geared to analyze
the code performance was carried out on a 32-bit PIII machine
with a RedHat 9 OS for guanine.30 In those simulations, the
energy window was set to 2500 cm-1, which resulted in a
vibration string of 37 entries. The maximum number of quanta
in each mode was set to nine, and in a set of three calculations,
the maximum number of simultaneously populated modes was
progressively increased from two, to three, and finally to four.
This resulted in the evaluation of 3457, 27 142, and 89 721
overlap integrals, respectively. The times taken by the calcula-
tion machine for the respective simulations were 1 min in the
first instance, 60 min in the second instance, and 12 h and 53
min in the last instance. These data points are plotted in Figure
8 together with the interpolation line generated from a function

Figure 8. Scaling of the computation time with the number of integrals.
The inset in the figure shows the results from fitting the functiony )
axb to the data points.
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of the typey ) axb, wherey is the calculation time andx is the
number of integrals calculated. A fit to the data points results
in the parameterb being close to 2 (fitted as 2.1375( 0.0037);
thus, the program scales with approximately O2 in the number
of overlap integrals O. The set of data points is certainly small,
but the result shown is indicative of the scaling of the code
with respect to the change in the number of integrals.

Note Added after ASAP Publication. This article was
published ASAP on March 21, 2006. Data were corrected in
Table 1. The revised version was reposted on March 30, 2006.
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